
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 1

Deep Learning
Federico Gianno

Abstract—An implementation of a Convolutional Neural Net-
work on a big image data-set. I used pytorch but also different
deep layer framework can be used. The code implements a
basic NN and CNN, the data loading, the training phase and
the evaluation (testing) phase. The training and testing are on
CIFAR 100 dataset (already included in Pytorch). All the test has
been done in Google colab: a very user friendly python notebook
from Google in which you can install python packages, download
datasets, plot images, and a free GPU to do training.

I. INTRODUCTION

I started from a pre-defined code that implement a basic
NN and CNN, the data loading, the training phase and the
evaluation(testing) phase. The purpose is to:

1) Train and understand the behaviour of the traditional NN
2) Train the CNN from scratch and to do several improve-

ments in order to obtain the best accuracy
3) Load ResNet18 pre-trained on ImageNet and fine-tune

it on the CIFAR 100 training

II. NN CLASS

The NN class provides two hidden layers and one FC layer
network. I trained this class on the CIFAR 100 train set with
the following parameters:

• 256 batch size
• 20 epochs
• 32x32 resolution
• Adam solver with learning rate 0.0001
At the end of the training I found that the accuracy of the

network on the test set is of 26%.
The accuracy is not very good but this result it’s not strange

for this kind of Neural Network. Rather, the NN is just a (deep)
Neural Network with several layers without convolution layer
and pooling layer. So, we can describe it as a basic Neural
Network in which no layers try to optimize the data

Accordingly with this description, a low accuracy is ex-
pected.

Fig. 1 shows the training loss and the accuracy curves
related to the number of epochs.

III. CNN CLASS

With same parameters of section II, I trained the CNN class
on the CIFAR 100 train set.

This time the result is a little better than the before: now
the accuracy of the network on the test set is of 30% (it goes
from 28% to 30%). I can say that this result is quite normal
because of the CNN is is a neural network using convolution
layer and pooling layer. These two kind of layer improves the
solutions:

Fig. 1. Training loss and the accuracy curves of the NN class training

• The convolution layer convolves an area, or a stuck of
elements in input data, into smaller area to extract feature.
It is done by filtering an area, which is as same as to
multiplying weights to an input data.

• The pooling layer picks an data with the highest value
within an area.

These layers act to extract an important feature from the
input for classification. So, the result is better than before.

IV. CONVOLUTIONAL FILTERS VALUES

I repeated what was done in section III but this time chang-
ing the number of convolutional filters, from 32/32/32/34 to:

• 128/128/128/256
• 256/256/256/512
• 512/512/512/1024

The first thing I noticed is the computational time: the more
are the convolutional filters the more are the time to train the
data. Another important thing is that I got a better accuracy
increasing the number of convolutional filters. Below the result
I obtained (with the corresponding convulutional filters):

• Accuracy : 31%, Loss : 0.160
• Accuracy : 34%, Loss : 0.077
• Accuracy : 36%, Loss : 0.045

As you can see the accuracy grows as the number of con-
volutional filter increases. Of course there is a drawback: the
performance depends (also) on the numbers of convolutional
filters. For example the 3rd attempt (512/512/512/1024) took
more or less 30/40 minutes to finish the train.

So, performance and accuracy are correlated each other and
they depend on the number of convolutional filters. However,



MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 2

I supposed there is like an upper-bound beyond which the
accuracy will not improve anymore.

At this point a good question could be: ”How many filters
do I need in order to relate performances and accuracy?” I
think there isn’t any formal notion that relates the number of
filters to performance. Its all experimental and iterative trail.

V. IMPROVEMENT

I tried to do several improvements to the network adding
layers and changing parameters.

As first thing I set the number of convolutional filters to
128/128/128/256 and then, step by step, I added several
modification to the network:

1) Batch Normalization at every convolutional layer
2) Batch Normalization plus a Fully Connected layer wider

(8192 neurons)
3) Batch Normalization plus Dropout 0.5 on the first Fully

Connected layer (this time with 4096 neurons)
With the Batch Normalization I noticed a good improve-

ment of accuracy: it goes from 31% to 42%. The Batch
Normalization greatly accelerating the learning process. It also
enabled the training of deep neural networks with sigmoid
activations that were previously deemed too difficult to train
due to the vanishing gradient problem. The whole point of BN
is to adjust the values before they hit the activation function,
so as to avoid the vanishing gradient problem.

Then, I increased the number of neurons of the first Fully
Connected layer from 4096 to 8192. The calculated accuracy
is of 43%. The difference is not very good (about 1%) and the
computational time is higher than before. With big number of
neurons, the model will learn too much representations/fea-
tures that are specific to the training data and dont generalize
to data in the real-world and outside of the training set
(overfitting).

Fig. 2 shows how change, at each epoch, the accuracy and
the loss of the current network on the test set. It’s clearly
visible the overfittig: from the 8th to the last epoch the loss
decrease but the accuracy still not change.

Fig. 2. Training loss and the accuracy curves of the CNN class training

Finally, I added a Dropout layer on the first fully connected
layer. Dropout is a technique used to improve over-fit on neural
networks. However, I do not notice any kind of improvement.
If I use both BN and Dropout it’s very difficult see an
improvement (about 1%), but if I remove the BN and use
only the drop then there is a clear accuracy improvement.

VI. DATA AUGMENTATION

Data augmentation is the creation of altered copies of each
instance within a training data-set. In this homework will be
performed the following data augmentation:

• Random Horizontal Flipping
• Random Crop
Starting from the network with 128/128/128/256 filters I

implemented the random horizontal flipping. The setting of
the network are the same of section III, expect for the number
of convolutional filters. The accuracy is better and it is equal
to 36%, against the 30%. With the random crop the accuracy
is 39%, even better than the random horizontal flip.

The improvement of the accuracy is due to the fact that
through these methods we ensure that the neural network can
differentiate signal from noise.

VII. RESNET18

I load the ResNet18 pretrained on ImageNet and finetune
it on the CIFAR 100 training set. The network has been set
with the following parameters:

• 128 batch size
• 10 epochs
• 224x224 resolution
• Adam solver with learning rate 0.0001
The accuracy found is very good and it goes from 76% to

the 83%, based on the usage of the data augmentation schema.
The computational time is very very slow but the accuracy is
the best one.

The accuracy is very good due to the nature of ResNet:
ResNet-18 is a convolutional neural network that is trained
on more than a million images from the ImageNet database.
The network is 18 layers deep and can classify images into
1000 object categories, such as keyboard, mouse, pencil, and
many animals. As a result, the network has learned rich feature
representations for a wide range of images [1].

VIII. MY CNN FROM SCRATCH

I did a lot test and read paper in order to obtain the best
accuracy as much as possible. As first thing I decided to
focus myself on the learning rate and the used optimizer.
I tried different learning rate on the Adam model but then
I opted to change not only the learning rate but also the
model itself. I decided to implement the Stochastic gradient
descent (SGD) optimizer: also known as incremental gradient
descent, is an iterative method for optimizing a differentiable
objective function, a stochastic approximation of gradient
descent optimization. It is called stochastic because samples
are selected randomly (or shuffled) instead of as a single group



MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 3

(as in standard gradient descent) or in the order they appear
in the training set [4].

At this point I changed the number of epochs. The SGD
optimizer needs an higher number of epochs in order to return
the best accuracy.

Then I used data augmentation in order to create altered
copy of each instance and improve the training: I used the
RandomHorizontalFlip().

After that, I tried different setting parameters for each used
layer:

• Convolutional layer
– Kernel size
– Stride
– Padding

• Batch Normalization
– momentum
– affine

• Dropout
• Number of neurons

Finally, I focused my attention on the type and the number
of used layer.

The best accuracy that I obtained is of 60%.

IX. MORE

A. Accuracy & Loss

The lower the loss, the better a model (unless the model
has over-fitted to the training data). The loss is calculated on
training and validation and its interpretation is how well the
model is doing for these two sets. Unlike accuracy, loss is not
a percentage. It is a summation of the errors made for each
example in training or validation sets.

In the case of neural networks, the loss is usually negative
log-likelihood and residual sum of squares for classification
and regression respectively. Then naturally, the main objective
in a learning model is to reduce (minimize) the loss function’s
value with respect to the model’s parameters by changing the
weight vector values through different optimization methods,
such as backpropagation in neural networks.

Loss value implies how well or poorly a certain model
behaves after each iteration of optimization. Ideally, one would
expect the reduction of loss after each, or several, iteration(s).

The accuracy of a model is usually determined after the
model parameters are learned and fixed and no learning is
taking place. Then the test samples are fed to the model
and the number of mistakes (zero-one loss) the model makes
are recorded, after comparison to the true targets. Then the
percentage of missclassification is calculated.

There are also some subtleties while reducing the loss value.
For instance, you may run into the problem of over-fitting
in which the model ”memorizes” the training examples and
becomes kind of ineffective for the test set. Over-fitting also
occurs in cases where you do not employ a regularization, you
have a very complex model (the number of free parameters W
is large) or the number of data points N is very low.

B. Learning Rate

The learning rate is one of the most important hyper-
parameters to tune for training deep neural networks. If
the learning rate is low, then training is more reliable, but
optimization will take a lot of time because steps towards the
minimum of the loss function are tiny.

If the learning rate is high, then training may not converge or
even diverge. Weight changes can be so big that the optimizer
overshoots the minimum and makes the loss worse.

The Fig. 3 (diagram) demonstrates the different scenarios
one can fall into when configuring the learning rate [2].

Fig. 3. Learning rate.

Furthermore, the learning rate affects how quickly our
model can converge to a local minima (aka arrive at the best
accuracy). Thus getting it right from the get go would mean
lesser time for us to train the model.

So, how choose best learning rate? If we record the learning
at each iteration and plot the learning rate (log) against loss;
we will see that as the learning rate increase, there will be a
point where the loss stops decreasing and starts to increase.
In practice, the learning rate should ideally be somewhere to
the left to the lowest point of the graph.

X. CONCLUSION

There are a lot of parameter that affects the performances
and the quality of a Deep Learning Neural Network. To
perform a NN there several strategies [3]:

• Data optimization
– Get More Data
– Invent More Data
– Re-scale Your Data
– Transform Your Data
– Feature Selection

• Algorithm tuning
• Hyper-parameter optimization



MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 4

– Learning rates
– Batch size and number of epochs

• Ensembles
I tried to adopt some of these strategies in order to obtain a

good CNN. I did a lot of test and tried several customization.
From my experience I can say that the major problem is the
data-set, or rather, the more are the data the better the accuracy
will be. Of course other consideration must be done, as well as
the number of the convolutional layer, the usage of the batch
normalization and of the dropout, number of neurons, etc. Lots
of trail and error (and the study of these kind of topic) will
make my knowledge better.

REFERENCES

[1] Pretrained ResNet-18 convolutional neural network. https://www.
mathworks.com/help/deeplearning/ref/resnet18.html

[2] Understanding Learning Rates and How It Improves Per-
formance in Deep Learning https://towardsdatascience.com/
understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

[3] Improve Deep Learning Performance https://machinelearningmastery.
com/improve-deep-learning-performance/

[4] From Wikipedia, Stochastic gradient descent https://en.wikipedia.org/
wiki/Stochastic gradient descent


