
POLITECNICO DI TORINO

DISTRIBUTED PROGRAMMING 2 - Year 2018 / 2019

SPECIAL PROJECT 3

DATA MODELS FOR NFV ARCHITECTURES

Enrico Cecchetti, s253823@studenti.polito.it
Federico Gianno, s255548@studenti.polito.it

Referrals:
Fulvio Valenza,

Jaloliddin Yusupov,
Riccardo Sisto

mailto:s253823@studenti.polito.it
mailto:s255548@studenti.polito.it

Contents

1 Introduction 2

2 Background 2
2.1 NFV: Network Function Virtualization . 2
2.2 SDN: Software-Defined Networking . 2

3 Starting point 2

4 Model Design 4
4.1 PNI: Physical Network Infrastructure . 4

4.1.1 Hosts . 5
4.1.1.1 Host . 5

4.1.2 Connections . 6
4.2 NSD: Network Service Descriptor . 6

4.2.1 VNF Dependency . 6
4.2.2 Property Definition . 8
4.2.3 VNFD: Virtual Network Function Descriptor 8

4.2.3.1 VDU: Virtual Deployment Unit . 9
4.2.3.2 Virtual Link . 10
4.2.3.3 Dependency . 10

4.2.4 VNFFGD: VNF Forwarding Graph Descriptor 11
4.2.4.1 Network forwarding path . 11

4.2.5 PNFD: Physical Network Function Descriptor 12
4.2.5.1 Connection point . 12

4.2.6 Service Deployment Flavour . 12
4.2.7 Connection Point . 13

5 RESTful web service 14
5.1 Development . 14
5.2 Granularity . 14
5.3 Methods . 15

5.3.1 PNI . 15
5.3.1.1 Hosts . 16
5.3.1.2 Connections . 17

5.3.2 NS . 18
5.3.2.1 VNF Dependency . 19
5.3.2.2 Property Definition . 21
5.3.2.3 VNF . 22
5.3.2.4 VNFFGD . 23
5.3.2.5 PNF . 24
5.3.2.6 Flavours . 25
5.3.2.7 Connection Points . 26

1

1 Introduction

This paper is for the subject Distributed programming II. The purpose of the project is to:

• Design a data format (described by means of an XML schema) for the representation of all the
most relevant information in the NFV and SDN contexts.

• Design and implement a RESTful web service that permits to store and retrieve the NFV/SDN
information.

2 Background

NFV and SDN are emerging paradigms that allow to separate the network’s control logic from the
underlying routers and switches introducing the ability to program the network. In the following
paragraphs, is proposed a standard to manage these two architectures.

2.1 NFV: Network Function Virtualization

The main idea of NFV is the decoupling of physical network equipment from the functions that
run on them. This means that a network function, such as a firewall, can be dispatched to a TSP
(Telecommunication Service Providers) as an instance of plain software.
The VNFs may then be relocated and instantiated at different network locations without necessarily
requiring the purchase and installation of new hardware [1].

2.2 SDN: Software-Defined Networking

SDN is a network paradigm that give a breath of fresh air on the nowadays architecture and that can
revolution all the model we are using up to now. The aim of SDN is to provide open interfaces that
enable the development of software that can control the connectivity provided by a set of network
resources and the flow of network traffic though them, along with possible inspection and modification
of traffic that may be performed in the network [2].

3 Starting point

We started from VerifOO & Verigraph NFV schema. First of all, we studied its model and compared
it with the most successful standard: ETSI and TOSCA. After summarized the major difference
between ETSI and VerifOO/Verigraph, we started to modify their structure in order to be as closer
as possible to the standard.
In table 1 are listed the major difference between the two models. Also a resume schema is available
here.
To summarize: VerifOO & Verigraph is not really compliant with the standard: there are some
elements that are missing, other ones with different names and/or attribute, also similar structures
sometimes they got additional functional and sometimes less.

2

https://raw.githubusercontent.com/netgroup-polito/nfv-data-model/master/data-format/doc/VerifOO-Verigraph_resume.png?token=AYIltK1i1rPj3A9TCg0QdBJZRZjgzM3lks5ci86JwA%3D%3D

VerifOO
Verigraph
element

ETSI correspond-
ing element

ESTI description Compliant with the standard

NFV NSD

NSD consists of statics
information elements
used by NFV Orches-
trator to instantiate a
Network Service.

More or less. The purpose is
the same but the level of ab-
straction is different.

Graphs
NSD:
nfv dependency

It defines the sequence
in which various nodes
and links within a VNF
should be instantiated
by VNF orchestrator.

ETSI does not provide a
specific configuration of that
item.

Constraints NSD:vnfd

It describes a VNF
in terms of deploy-
ment and operations be-
haviours requirements.

More or less. It has some
matching elements with the
standard.

Node con-
straints

NSD:vnfd:vdu

Information elements
concerning the VDU
(e.g. processor and
memory requirements).

Yes, but the standard is more
detailed.

Link con-
straints

NSD:vld

It describes the basic
topology of the connec-
tivity between one or
more VNFs, and other
required parameters.

Yes, but with less parameters
with the respect to the stan-
dard.

Property
definition

- -
No, but it’s useful for Veri-
fOO/Verigraph workflow.

Hosts - -
No, the standard does not
provide physical infrastruc-
ture implementation.

Connection - - No (same reasons of above).

Network
Forwarding
Path

NSD:vnffgd

The traffic flow through
a VNFFGD is con-
trolled by a Forwarding
Path element.

Not so much. In the standard
there are a lot of elements that
here are missing.

Parsing
string

- - No.

Table 1: VerifOO/Verigraph vs ETSI

3

4 Model Design

Network Function Vitalization (NFV) is an entity containing two main blocks:

• The Physical Network Infrastructure (PNI)

• The list of the Network Services offered by the network (NS)

This implementation is not described in the standard, it cares only about the Network Services without
infer anything about the physical structure that will host them.
Here, is proposed a different structure with the respect to the standard, because we think that it is
worth to store those additional information (PNIs) to manage the allocation of the virtual functions
in the physical machines and retrieve them in future.

Identifier Type Cardinality Description

pni Element 1
Map of the physical network infrastruc-
ture.

ns Element 0...1
List of Network Service Descriptor within
the network.

Table 2: Network Function Vitalization

Neither in the ETSI standard and TOSCA does exist a definition for the NFV. They both start from
the NSD entity.
Since PNI is necessary to VerifOO & Verigraph has been decided to left the root element (NFV), like
in the previous schema, with, in addition to the physical structure, has been defined a new structure
containing the Network Services Descriptors (NSD).
The previous schema was composed by both PNI and NSD without a clear difference between them,
in terms of attribute and functionality.
To have an overview of the whole schema see this.

4.1 PNI: Physical Network Infrastructure

Entity containing the set of subnets within the network, its hosts and the relative connections between
them.

Identifier Type Cardinality Description

hosts Element 0...N
Hosts which is part of the physical con-
nections.

connections Element 0...N
Map of the physical connection within the
network.

Table 3: NFV:PNI

The whole block contains Hosts and connections has been moved inside this new entity called PNI
in order to wrap them together.

4

https://raw.githubusercontent.com/netgroup-polito/nfv-data-model/master/data-format/doc/NFV_model_final.png?token=AYIltFsv8LRFrn_5Q9PjAYBe2HxRzoBFks5ci87twA%3D%3D

We decided to left this block outside the NS because the Physical Network Infrastructure does not
concern the description of a Network Service. Then, it should not be included in the NS. This permits
also to generalize the schema to make it compatible with wide range of tools.
Moreover, this approach allow us to implement a NS in such way that a future implementation will
not require critical changes in the model.

4.1.1 Hosts

A branch (subnet) of the network infrastructure.

Identifier Type Cardinality Description

host Element 1...N
Physical machine present in the network
infrastructure.

Table 4: NFV:PNI:hosts

The previous schema, adopted in VerifOO & Verigraph, has been maintained because it is not a bad
structure considering the lack of standard design.

4.1.1.1 Host

Identifier Type Cardinality Description

id Attribute 1 ID of the physical machine.

name Attribute 0...1 Name of the physical machine.

fixedEndPoint Attribute 0...1 -

active Attribute 1
True if at least one node has been deployed
on the host.

maxVNF Attribute 1
Maximum of Virtual Network Function
that the host can handle.

type Element 0...N
Defines the type of the host (e.g. client,
server, middle-box).

computational properties Element 0...1
Describes the memory and cpu resources
characteristics (e.g. cpu, cores, number of
operations).

memory properties Element 0...1
Represents the physical memory of the
host (e.g. memory, disk storage, virtual
memory resources).

network properties Element 0...1
It represents the network characteristics
(e.g. bandwidth).

v node ref Reference 0...N Reference to a virtual network function.

p node ref Reference 0...1 Reference to a physical network function.

supported VNF Element 0...N Functional types which the host supports.

Table 5: NFV:PNI:hosts:host

5

The main structure, more or less, remained the same. Some attributes has been grouped based on
their purpose (e.g. computational properties: cpu, cores, number of operations, etc.).
Also, has been added a physical node reference in order to connect to the network some physical
devices that are not virtualized yet.

4.1.2 Connections

Map of the physical connection.

Identifier Type Cardinality Description

connection Element 0...1
The connection between two or more hosts
in terms of source, destination and la-
tency.

Table 6: NFV:PNI:connections

The previous schema, adopted in VerifOO & Verigraph, has been maintained because it is not a bad
structure considering the lack of standard design.

4.2 NSD: Network Service Descriptor

The NS is composed by a sequence of NSD: the Network Service Descriptor is a deployment template
for a Network Service refereeing all other descriptors which describe components that are part of that
network service.
NSD has been designed has much as possible closer to the standard.
Has been inserted some different entities with the respect to the previous VerifOO & Verigraph schema
because it was not very compliant with the standard. For the same reason, the name of other elements
has been modified with the corresponding ETSI’s name.
These elements has been added: id, vendor, version, pnfd, service deployment flavour and connection
point.
Instead, these elements has been modified:

• Graphs → nfv dependencies

• Constraints → vnfd

• Network Forwarding Path → vnffgd

4.2.1 VNF Dependency

Describe dependencies between VNF. Defined in terms of source and target VNF, i.e. target VNF
”depends on” source VNF. In other words a source VNF shall exist and connect to the service before
target VNF can be initiated/deployed and connected. This element would be used, for example, to
define the sequence in which various numbered network nodes and links within a VNFFGD should be
instantiated by the NFV Orchestrator.

6

Identifier Type Cardinality Description

id Attribute 1 ID of this Network Service Descriptor.

vendor Attribute 0...1
Provider or Vendor of this Network Ser-
vice.

version Attribute 0...1 Version of the Network Service Descriptor.

vnf dependency Element 0...1 Describes dependencies between VNF.

property definition Element 0...1
List of properties that will be checked by
VerifOO for a specific graph (useful for
VerifOO and Verigraph).

vnf Element 0...1 VNF which is part of the Network Service.

vnffgd Element 0...1
VNFFGD which is part of the Network
Service.

pnf Element 0...1
PNFs which are part of the Network Ser-
vice.

flavours Element 0...1

Represent the service KPI parameters and
its requirement for each deployment fla-
vors of the NS being described. For ex-
ample flavour describing the requirement
for support a service with 300k calls per
second.

connetion points Element 0...1
List of connection points which acts as an
end point of the Network Service.

Table 7: NFV:NS:NSD

Figure 1: Network composed by two subnets, respectively with 3 and 4 hosts.

The ETSI standard does not provide a specific schema for this element. Therefore, has been decided
to not change the main structure proposed by VerifOO & Verigraph schema. To be exactly the same
as the standard, graphs has been renamed as vnf dependecy. Also an attribute has been added:
vnfd id, that is a referenced by the id of VNFD and it is indicating what kind of VNF that node is
providing. See [3], clause 6.2.1.1.

7

4.2.2 Property Definition

Property Definition is not defined neither in ETSI neither in TOSCA. Has been decided to leave
it in order to not compromise the correct functionality of VerifOO & Verigraph.

4.2.3 VNFD: Virtual Network Function Descriptor

VNF is a sequence of VNFD, a deployment template which describes a VNF in terms of its deployment
and operational behavior requirements. The information provided in the VNFD should be used by an
Orchestrator to manage and orchestrate Network Services and virtualized resources.

Identifier Type Cardinality Description

id Attribute 1
ID for this Virtual Network Function De-
scriptor.

vendor Attribute 0...1
Provider or Vendor of this Virtual Net-
work Function.

version Attribute 0...1
Version of the Virtual Network Function
Descriptor.

vdu Element 1...N
Describes a set of elements related to a
particular VDU.

virtual link Element 0...N
Describes the required parameters. The
name has been changed from the previous
‘connections’.

dependency Element 0...N
Dependencies between VDUs. Defined in
terms of source and target VDU.

Table 8: NFV:NSD:vnf:vnfd

In the previous model, the VNFD entity was ambiguous: it was called with another name (con-
straints). Its elements LinkConstraints and NodeConstraints, the actual vdu and virtual link, were
incomplete and messy. This is due to the fact that the properties was massed all inside to a single
entity.
Has been introduced one new entity: dependency, present in the standard. Motivation will be reported
in the corresponding section.

8

4.2.3.1 VDU: Virtual Deployment Unit

The VDU is a basic part of VNF. It is the VM that hosts the network functions. It describes the
properties like image to be used in VDU, management driver to be used, flavour describing physical
properties for the VDU to be spawned, etc.

Identifier Type Cardinality Description

id Attribute 1 ID of this Virtual Deployment Unit.

vm image Attribute 0...1 Provides a short description of the VM.

computation requirements Element 1
Describes the memory and cpu resources
characteristics (e.g. cpu, cores, number of
operations).

memory requirements Element 0...1
Describes the memory and cpu resources
characteristics (e.g. cpu, cores, number of
operations).

network requirements Element 0...1
Represents the network requirements (e.g.
bandwidth).

Table 9: NFV:NS:NSD:vnf:vnfd:vdu

First of all, has been added the attribute vm image, that is a generic description about the charac-
teristic of the virtual machine. It is implemented by both ETSI and TOSCA. However, it has been
designed as a generic string because ETSI standard does not provide a specific implementation about
the VM information, instead TOSCA propose a very detailed structure about that.
More details about TOSCA VM at [4], see clause 5.4.1.1.
Then, regarding the other changes, metrics has been split into three different blocks, each one
specific for a requirement type: computation requirements, memory requirements and net-
work requirements. The split is due to the fact that these requirements was all inside the same
entity but without a distinction between them. Moreover, this approach will permit future implemen-
tation and it is better compliant with the standard.
See [3] clause 6.3.1.2.

9

4.2.3.2 Virtual Link

Virtual link is a deployment template which describes the resources requirement that are needed for
a link between VNFs, PNFs and end-point of the Network Service.

Identifier Type Cardinality Description

src Attribute 1 Source connection point of a VNF.

dst Attribute 1 Destination connection point of a VNF.

test access Attribute 0...1

Describes test access facilities to be sup-
ported on the VL (e.g. none, passive,
monitoring or active (intrusive) loopbacks
at endpoints).

qos Element 0...N
Describes Quality of Service options to be
supported on virtual link (e.g latency, jit-
ter).

Table 10: NFV:NS:NSD:vnf:vnfd:virtual link

The structure is more ore less similar to the previous one. The attribute requiredLatency has been
included inside the new entity qos (Quality of Service). The creation of this element permits to include
inside a single entity, not only the latency, but also other related parameters. In this way the model is
more similar to the standard and is possible to store other data (as the jitter) that are cited by ETSI.
See [3], clause 6.3.1.3.
Like in TOSCA and ETSI, has been introduced the test access entity. It passively/actively can
capture traffic on a network and use it to monitor the network traffic between two points of the
network.
See [3], clause 6.3.1.3; or [4], clause 5.9.6.1.

4.2.3.3 Dependency

This a new entity, that represents the constraint in terms of target VDU ”depends on” source VDU.
In other words, sources VDU shall exists before target VDU can be initiated/deployed.
Speaking about the xsd schema, the element dependency is a sequence of elements relations, each
one composed by two references to a source VDU and destination VDU.
See [3], clause 6.3.1.1.

10

4.2.4 VNFFGD: VNF Forwarding Graph Descriptor

VNFFGD is a deployment template which describes a topology of the network service or a portion
of the network service by referencing VNFs and PNFs and Virtual Links that connect them.

Identifier Type Cardinality Description

id Attribute 0...1 ID for the VNFFG Descriptor.

vnffgd security Attribute 0...1

This is a signature of vnffgd to prevent
tampering. The particular hash algorithm
used to compute the signature, together
with the corresponding cryptographic cer-
tificate to validate the signature should
also be included.

network forwarding path Element 0...N
Describes a network forwarding graph
within the VNFFGD.

Table 11: VNF:NS:NSD:vnffgd

The main structure is, more or less, the same as VerifOO & Verigraph. Some elements has been
renamed: from Network Forwarding Path to vnffgd and from path to network forwarding path.
A new entity has been added vnffgd security, it contains the policy to assure the security of the
forwarding path.
See [3], clause 6.5.1.1.

4.2.4.1 Network forwarding path

Identifier Type Cardinality Description

id Attribute 1
Specify the identifier (e.g. name) of the
Network Forwarding Path.

n endpoint Attribute 0...1
Count of the external endpoints included
in this VNFFG, to form an index.

n vl Attribute 0...1
Count of the VLs used by this VNFFG, to
form an index.

connection Element 2...N
Reference to a Connection Point forming
the VNFFG.

Table 12: VNF:NS:NSD:vnffgd:netork forwarding path

In this section has been added some information that could be useful for some kind of analysis
(n endpoint and n vl indexes). Also, the name of path Node has been changed to connection,
as the standard.
See [3], clause 6.5.1.1 & 6.5.1.2.

11

4.2.5 PNFD: Physical Network Function Descriptor

PNF is a list ofPhysical Network Function Descriptor (PNFD) that describes the connectivity,
Interface and KPIs requirements of Virtual Links to an attached Physical Network Function. This is
needed if a physical device is incorporated in a Network Service to facilitate network evolution [3].

Identifier Type Cardinality Description

id Attribute 1 The ID (e.g. name) of this PNFD.

vendor Attribute 0...1 The vendor generating this PNFD.

version Attribute 0...1
The version of PNF this PNFD is describ-
ing.

description Attribute 0...1
This element describes an external inter-
face exposed by this PNF enabling con-
nection with a VL.

connection point Element 0...1 Physical connection point of the PNFD.

Table 13: VNF:NS:NSD:pnf:pnfd

Has been decided to introduced this new element because it is expected by the standard (see [3], clause
6.6.1). As written in [6], many service providers have made huge investments in these appliance based
solutions and quite rightly expect to continue to realize the benefit of these investments for some years
into the future.

4.2.5.1 Connection point

The following table represents the structure of the connection point previously cited.

Identifier Type Cardinality Description

id Attribute 1 ID of the Connection Point

type Attribute 0...1

This may be for example a virtual port,
a virtual NIC address, a physical port, a
physical NIC address or the endpoint of an
IP VPN enabling network connectivity.

Table 14: NFV:NS:NSD:pnf:pnfd:connection point

4.2.6 Service Deployment Flavour

TOSCA and ETSI provide two different implementation for the Deployment Flavour:

• TOSCA inserts the flavour only inside the Virtual Link Descriptor: it describes a specific flavour
of the VL with specific bit-rate requirements.

See [4], clause 5.9.6.1.

• ETSI propose two different flavour:

12

– One inside the VNFD, in order to represent the assurance parameters and its requirements
for each deployment flavours being descripted (e.g. 10k call per second).

See [3], clause 6.3.1.5.

– One in the NSD, that is the proposed one. It represents the assurance parameters of the
Network Service being descripted.

See [3], clause 6.2.1.3.

Identifier Type Cardinality Description

id Attribute 1 ID of the deployment flavour.

flavour key Attribute 1

Assurance parameter against which this
flavour is being described. For example,
a flavour of a virtual EPC could be de-
scribed in terms of the assurance parame-
ter ”calls per second” (cps).

flavour value Attribute 1 Value associated to the flavour key.

Table 15: NFV:NS:NSD:flavours:service deployment flavour

Flavours are constraints about a certain service or function (e.g. 1k calls per second) that must
be assured. ETSI propose two levels of flavour: service deployment flavour (inside the NSD) and
deployment flavour (inside VNFD).
The flavours contain the constraints and the reference to the VNFs (if NDS’s flavour) or VDUs
(otherwise) that permits to ensure that.
The idea is that the flavor inside the VNFD could be avoided because it is too hard to design and it
carries useless information. Instead, has been implemented the flavour of the NSD because it could be
useful for future implementation. Right now, it may not be used but in this way the model represents
a good starting point for future implementations.

4.2.7 Connection Point

Connection points contains the sequence of Connection point that represents a possible connection
point of that Network Service.

Identifier Type Cardinality Description

id Attribute 1 ID of the Connection Point.

type Attribute 1

This may be for example a virtual port,
a virtual NIC address, a physical port, a
physical NIC address or the endpoint of an
IP VPN enabling network connectivity.

Table 16: NFV:NS:NSD:connectio points:connection point

This element has been added because it is provided by ETSI. In the future it could be exploited by
connecting different Network Service between them. It may be used in a Software Developed Network.
See [3], clause 6.2.1.2.

13

5 RESTful web service

The developed RESTful web service allows to store and retrieve information about the NFV schema
previously described. It permits to add, delete and modify not only the entire structure of the network
but also its sub-parts.

5.1 Development

The RESTful has been developed both in Eclipse Neon 2 and IntelliJ IDEA, with the following features:

• Framework: Jersey 2.2 and JAXB

• Server: Tomcat v8.5 (for Eclipse) and Glassfish 4.1 (for IntelliJ)

• Swagger API

The used library are available here.
In the README of the GitHub repo is described how to configure the environment for both Eclipse
and IntelliJ IDEA. Source code is also available.

5.2 Granularity

First of all, it is not allowed to to GET, POST and DELETE the root element NFV but is only
possible to perform that methods in its sub-root: PNI and NS. Notice that, for these elements, the
POST will overwrite all the previous structures (if there was one). This choice is due to the fact that
in the PNI, for example, if you want to add more Host or Connection, you can just use the relative
Method instead of POST from the root. For the same reason, this approach has been adopted also in
the NS.
Focusing on the sub-structures of PNI, it is allowed GET, POST, DELETE and also PUT (MODIFY)
a single or multiple Hosts and/or Connections. In this way is very easy to modify the Physical
Network Structure. It is not allowed to perform operations on the attributes and/or elements of Host
and Connection: if you want to perform some kind of operations in that attributes/elements just
perform it on the Host/Connection. The motivation is that the properties of a certain host will hardly
change if the hosts itself will not change. So, at that point, if a specific requirements need to be
changed probably also the host would need a change. Therefore, no methods to GET, POST and
DELETE elements of Host and Connection.
Regarding NSD, it is possible to GET, POST and DELETE a NSD, but is not allowed to PUT
(MODIFY) an existing NSD: if you want to modify a certain NSD just use the relative method that
will allow you to modify each single element of that NSD.
About VNFDependency, same considerations of NSD can be done. Moreover, a POST of VNFDe-
pdency will overwrite all the previous structures. If you want to add something just use the relative
method for that element. In this way, for example, if you want to add multiple graph, for each graph
a response will be provided with a feedback related to the used method. Adding more than one graph
contemporaneously, it will not possible to have a response for each graph but it will only possible
to have a global response. So, if one graph could not be added to the structure it will not reported

14

https://github.com/netgroup-polito/nfv-data-model/tree/master/lib
https://github.com/netgroup-polito/nfv-data-model/blob/master/README.md#configuration
https://github.com/netgroup-polito/nfv-data-model

because, maybe, the other n graph will be added correctly. By adding one graph at time it will be
possible to have more control on what is happening within the system.
Concerning its elements, Graph and Node, it is possible to GET, POST and DELETE but not
to PUT (MODIFY) a graph. If you want to modify a graph, for sure you need to add, remove or
modify some nodes of that graph, so just use the relative method of node that will allow you to POST,
DELETE and PUT (MODIFY) a node. If you need to modify the neighbour or a configuration of a
certain node just modify the node. Same motivations of host can be done.
For PropertyDefinition, the methods will allow you to GET, POST and DELETE all the defined
property : for the same reason of VNFDependency, if you POST a ProeprtyDefinition it will overwrite
all the previous structures. Just use the relative methods of Property that will allow you to GET,
POST, DELETE and PUT (MODIFY) a single property.
The same considerations of VNFDependency can be done for VNF. So, it is permitteed to GET,
POST and DELETE of a VNF and the POST will overwrite the previous structures.
Concerning its elements, it is only allowed to GET, POST, DELETE and PUT (MODIFY) the VNFD.
It is not permitted to perform operations in the elements of that VNFD because of, for example, the
VDU is describing the property of that VNFD, so if the VDU need to be changed also the VNFD
itself need to be changed. Also for the VirtualLink, it describes the resources requirements that
are needed for a link between VNFs, so if they will change it means that that VNF is not anymore
the same or at least it has been changed. Same consideration for Dependency that describes the
dependencies between VDUs.
Finally, for VNFFGD, PNF, Flavours and ConnectionPoints it is allowed to GET, POST,
DELETE the root elements and PUT (MODIFY) the related elements. A POST from a root ele-
ments will overwrite all the previous structures for the same reason described above.

5.3 Methods

All method listed below are under the path {project name}/nfv and will throw 500 Internal Error
when an unexpected error occurred. More information will follow.

5.3.1 PNI

PNI’s methods permits to manage the whole PNI structure.

PNI

Method Path Description Parameters Response

GET /pni Read the PNI
data.

- 200 OK and the PNI
structure.

POST /pni Add a new PNI.
It will overwrite
the previous one
(if exists).

The body must
contain the PNI
structure.

201 Created and the
added PNI.

DELETE /pni Clear the PNI
structure.

- 204 No Content.

15

5.3.1.1 Hosts

Hosts methods permits to manage single or multiple hosts.

Hosts

Method Path Description Parameters Response

GET /pni/hosts Read all the hosts
inside the PNI.

- 200 OK and the Hosts
inside the PNI.

POST /pni/hosts Add a list of Host. The body must
contain the Hosts
structure.

201 Created and the
added Hosts.

GET
/pni/hosts/
host/{id} Read a host infor-

mation.
The Id of the Host
must be in the
path.

404 Not Found if that
Host does not exist. 200
OK and the requested
Host otherwise.

POST /pni/hosts/host Add a Host. The body must
contain the Host
structure.

403 Forbidden if the
Host just exists. 201
Created and the added
Host otherwise.

DELETE
/pni/hosts/
host/{id} Delete an existing

Host.
The Id of the Host
must be in the
path.

404 Not Found if the
Host does not exist. 204
No Content otherwise.

PUT /pni/hosts/host/ Modify an exist-
ing Host.

The body must
contain the Host
structure.

404 Not Found if the
Host does not exist. 200
OK and the modified
Host otherwise.

16

5.3.1.2 Connections

Connections methods permits to manage single or multiple connections.

Connections

Method Path Description Parameters Response

GET /pni/ connections Read all the con-
nections inside
the PNI.

- 200 OK and the Con-
nections inside the PNI.

POST /pni/ connections Add a list of Con-
nection.

The body must
contain the
Connections
structure.

201 Created and the
added Connections.

GET
/pni/ connec-
tions/ connec-
tion/ {src}&{dst}

Read a connec-
tion information.

Source and des-
tination of that
connection must
be in the path.

404 Not Found if that
connection does not ex-
ist. 200 OK and the re-
quested connection oth-
erwise.

POST
/pni/ connec-
tions/ connection

Add a Connec-
tion.

The body must
contain the Con-
nection structure.

403 Forbidden if the
that connection just ex-
ist. 201 Created and the
added connection other-
wise.

DELETE
/pni/ connec-
tions/ connec-
tion/ {src}&{dst}

Delete a Connec-
tion.

Source and des-
tination of that
connection must
be in the path.

404 Not Found if the
connection does not ex-
ist. 204 No Content
otherwise.

PUT
/pni/ connec-
tions/ connec-
tion/

Modify an exist-
ing Connection.

The body must
contain the Con-
nection structure.

404 Not Found if the
connection does not ex-
ist. 200 OK and
the modified connection
otherwise.

17

5.3.2 NS

NS methods permits to manage the whole NS structure.

NS

Method Path Description Parameters Response

GET /ns Read the NS
data.

- 200 OK and the NS
structure.

POST /ns Add a list of NSD.
It will add the list
of NSD and over-
write the previous
one.

The body must
contain the NS
structure.

201 Created and the
added NS.

DELETE /ns Clear all the NSD. - 204 No Content.

NSD’s methods permits to manage each NSD inside the NS sequence.

NSD

Method Path Description Parameters Response

GET /ns/nsd/{id} Read the NSD
data.

The Id of that
NSD must be in
the path.

404 Not Found if the
NSD does not exist. 200
OK and the NSD other-
wise.

POST /ns/nsd Add a NSD. The body must
contain the NSD
strucutre.

403 Forbidden if the
NSD just exists. 201
Created and the added
NSD otherwise.

DELETE /ns/nsd/{id} Delete a NSD. The Id of that
NSD must be in
the path.

404 Not Found if the
NSD does not exist. 204
No Content otherwise.

NOTE: The methods below refer each existing NSD.
They have to be called under the path /ns/nsd/{id}, where id is the identifier of that NSD.
Remember that, entity can be created only if NS and at least one NSD exists. So, each of the method
below will work only if the corresponding NSD exists: if you try to GET, POST, DELETE or PUT
an element considering a non existing NSD you’ll got 404 Not Found (that is referred to the NSD that
not exists). More information related to methods response will follow.

18

5.3.2.1 VNF Dependency

VNF Dependency’s methods permits to manage the whole VNF Dependency structure.

VNFDependency

Method Path Description Parameters Response

GET /vnfdependency Read the VNF
Dependency data.

- 200 OK and the
VNFDependency struc-
ture.

POST /vnfdependency Add a VNFDe-
pendency. It will
overwrite the pre-
vious one.

The body must
contain the
VNFDependency
structure.

201 Created and the
added VNFDepen-
dency.

DELETE /vnfdependency Clear VNFDe-
pendency.

- 204 No Content.

19

VNFDependency:Graph-Node

Method Path Description Parameters Response

GET
/vnfdependency
/graph/{id} Read a certain

Graph data.
The Id of the
graph must be in
the path.

404 Not Found if the
graph does not exist.
200 OK and the Graph
otherwise.

POST
/vnfdependency
/graph

Add a new
Graph.

The body must
contain the
Graph structure.

403 Forbidden if the
graph does exist. 201
Created and the added
Graph otherwise .

DELETE
/vnfdependency
/graph/{id} Delete a Graph. The Id of the

Graph must be in
the path.

404 Not Found if the
Graph does not exist.
204 No Content other-
wise.

GET
/vnfdependency
/graph/{id}
/node/{id}

Read a certain
Node of a Graph.

The Id of the
Graph and Id of
the Node must be
in the path.

404 Not Found if the
Node does not exist in
that Graph. 200 OK
and the Node otherwise.

POST
/vnfdependency
/graph/{id}
/node

Add a new Node
in a Graph.

The body must
contain the Node
structure.

403 Forbidden if the
Node just exists in that
Graph. 201 Created
and the added Node
otherwise .

DELETE
/vnfdependency
/graph/{id}
/node/{id}

Delete a Node of a
Graph.

The Id of the
Graph and Id of
the Node must be
in the path.

404 Not Found if the
Node does not exist in
that Graph. 204 No
Content otherwise.

PUT
/vnfdependency
/graph/{id}
/node

Modify a Node of
a Graph.

The Id of the
Graph must be in
the path.

404 Not Found if the
Node does not exist in
that Graph. 200 OK
and the modified node
otherwise.

20

5.3.2.2 Property Definition

Property Definition’s methods permits to manage single or multiple properties.

PropertyDefinition

Method Path Description Parameters Response

GET /propertydefinition Read all the
Properties.

- 200 OK and the Proper-
tyDefinition structure.

POST /propertydefinition Add a list of
Property Defi-
nition. It will
overwrite the
previous one.

The body must
contain the Prop-
ertyDefinition
structure.

201 Created and the
added PropertyDefin-
tion.

DELETE /propertydefinition Clear all the
PropertyDefin-
tion.

- 204 No Content.

GET
/propertydefinition
/property/{id} Read a Property. The Id of the

Graph (that owns
the property)
must be in the
path.

404 Not Found if that
Graph does not have
that property. 200 OK
and the Property other-
wise.

POST
/propertydefinition
/property

Add a new Prop-
erty Definition.

The body must
contain the Prop-
erty structure.

201 Created and the
added Property.

DELETE
/propertydefinition
/property/{id} Delete a Property. The Id of the

Graph (that owns
the property)
must be in the
path.

404 Not Found if that
Graph does not have
that property. 204 No
Content otherwise.

PUT
/propertydefinition
/property

Modify a Prop-
erty.

The body must
contain the Prop-
erty structure.

404 Not Found if the
Property does not exist.
200 OK and the modi-
fied Property otherwise.

21

5.3.2.3 VNF

VNF’s methods permits to manage single or multiple VNFDs.

VNF

Method Path Description Parameters Response

GET /vnf Read all the
VNFDs.

- 200 OK and the VNF
structure.

POST /vnf Add a list of
VNFD. It will
add overwrite the
previous one.

The body must
contain the VNF
structure.

201 Created and the
added VNF.

DELETE /vnf Clear all the
VNFD.

- 204 No Content.

GET /vnf/vnfd/{id} Read a VNFD. The Id of the
VNFD must be in
the path.

404 Not Found if VNFD
does not exist. 200 OK
and the VNFD other-
wise.

POST /vnf/vnfd Add a new
VNFD.

The body must
contain the
VNFD structure.

403 Forbidden if that
VNFD exists. 201
Created and the added
VNFD otherwise.

DELETE /vnf/vnfd/{id} Delete a VNFD. The Id of the
VNFD must be in
the path.

404 Not Found if the
VNFD does not exist.
204 No Content other-
wise.

PUT /vnf/vnfd Modify a VNFD. The body must
contain the
VNFD structure.

404 Not Found if the
VNFD does not exist.
200 OK and the modi-
fied VNFD otherwise.

22

5.3.2.4 VNFFGD

VNFFGD’s methods permits to manage single or multiple Network Forwarding Path.

VNFFGD

Method Path Description Parameters Response

GET /vnffgd Read all Network
Forwarding Path.

- 200 OK and the VNF-
FGD structure.

POST /vnffgd Add a list of Net-
work Forwarding
Path. It will over-
write the previous
the one.

The body must
contain the Net-
work Forwarding
Path structure.

201 Created and the
added VNFFGD.

DELETE /vnffgd Clear all the Net-
work Forwarding
Path.

- 204 No Content.

GET /vnffgd/nfp/{id} Read a Network
Forwarding Path.

The Id of the Net-
work Forwarding
Path must be the
path.

404 Not Found if Net-
workForwardingPath
does not exist. 200 OK
and the NetworkFor-
wardingPath otherwise.

POST /vnffgd/nfp Add a new
NetworkForward-
ingPath.

The body must
contain the Net-
work Forwarding
Path.

403 Forbidden if that
NetworkForwarding-
Path exists. 201
Created and the Net-
workForwardingPath
otherwise.

DELETE /vnffgd/nfp/{id} Delete a Network
Forwarding Path.

The Id of the
NetworkForward-
ingPath must be
in the path.

404 Not Found if the
NetworkForwarding-
Path does not exist. 204
No Content otherwise.

PUT /vnffgd/nfp Modify a Net-
workForwarding-
Path.

The body must
contain the Net-
work Forwarding
Path structure.

404 Not Found if the
NetworkForwarding-
Path does not exist. 200
OK and the modified
NetworkForwarding-
Path otherwise.

23

5.3.2.5 PNF

PNF’s methods permits to manage single or multiple PNFDs.

PNF

Method Path Description Parameters Response

GET /pnf Read all PNF. - 200 OK and the PNF
structure.

POST /pnf Add a list of PNF.
It will overwrite
the previous the
one.

The body must
contain the PNF
structure.

201 Created and the
added PNF.

DELETE /pnf Clear all the
Physical Network
Function.

- 204 No Content.

GET /pnf/pnfd/{id} Read a PNFD. The Id of the
PNFD must be in
the path.

404 Not Found if PNFD
does not exist. 200 OK
and the PNFD other-
wise.

POST /pnf/pnfd Add a new
PNFD.

The body must
contain the
PNFD structure.

403 Forbidden if that
PNFD exists. 201 Cre-
ated and the PNFD
otherwise.

DELETE /pnf/pnfd/{id} Delete a PNFD. The Id of the
PNFD must be in
the path.

404 Not Found if the
PNFD does not exist.
204 No Content other-
wise.

PUT /pnf/pnfd Modify a PNFD. The body must
contain the
PNFD structure.

404 Not Found if the
PNFD does not exist.
200 OK and the modi-
fied PNFD otherwise.

24

5.3.2.6 Flavours

Flavours methods permits to manage single or multiple Service Deployment Flavours.

Flavours

Method Path Description Parameters Response

GET /flavours Read all the Ser-
vice Deployment
Service.

- 200 OK and the
Flavours structure.

POST /flavours Add a list of Ser-
vice Deployment
Service. It will
overwrite the pre-
vious the one.

The body must
contain the
Flavours struc-
ture.

201 Created and the
added Flavours.

DELETE /flavours Clear all the Ser-
vice Deployment
Service.

- 204 No Content.

GET
/flavours/flavour/
{id} Read a Service

Deployment Ser-
vice.

The Id of the Ser-
vice Deployment
Service must be in
the path.

404 Not Found if Ser-
vice Deployment Ser-
vice does not exist. 200
OK and the Service De-
ployment Service other-
wise.

POST /flavours/flavour Add a new Ser-
vice Deployment
Service.

The body must
contain the Ser-
vice Deployment
Service structure.

403 Forbidden if that
Service Deployment
Service exists. 201
Created and the Service
Deployment Service
otherwise.

DELETE
/flavours/flavour/
{id} Delete a Service

Deployment Ser-
vice.

The Id of the Ser-
vice Deployment
Service must be in
the path.

404 Not Found if the
Service Deployment
Service does not ex-
ist. 204 No Content
otherwise.

25

5.3.2.7 Connection Points

Connection Points methods permits to manage single or multiple Connection Point.

ConnectionPoints

Method Path Description Parameters Response

GET /cps Read all the Con-
nection Points.

- 200 OK and the Con-
nection Points struc-
ture.

POST /cps Add a list of Con-
nection Point. It
will overwrite the
previous the one.

The body must
contain the Con-
nection Points
structure.

201 Created and the
added Connection
Points.

DELETE /cps Clear all the Con-
nection Points.

- 204 No Content.

GET /cps/cp/{id} Read a Connec-
tion Point.

The Id of the
Connection Point
must be in the
path.

404 Not Found if Con-
nection Point does not
exist. 200 OK and the
Connection Point other-
wise.

POST /cps/cp Add a new Con-
nection Point.

The body must
contain the Con-
nection Point
structure.

403 Forbidden Excep-
tion if that Connec-
tion Point exists. 201
Created and the added
Connection Point other-
wise.

DELETE /cps/cp/{id} Delete a Connec-
tion Point.

The Id of the
Connection Point
must be in the
path.

404 Not Found if the
Connection Point does
not exist. 204 No Con-
tent otherwise.

26

References

[1] Network Function Virtualization: State-of-the-art and Research Challenges - Rashid Mijumbi, Joan
Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, Raouf Boutaba. https://ieeexplore.
ieee.org/document/7243304

[2] Software-Defined Networking: A Comprehensive Survey - Diego Kreutz, Member, IEEE, Fernando
M. V. Ramos, Member, IEEE, Paulo Verissimo, Fellow, IEEE, Christian Esteve Rothenberg, Mem-
ber, IEEE, Siamak Azodolmolky, Senior Member, IEEE, and Steve Uhlig, Member, IEEE

[3] ETSI GS NFV-MAN 001 V1.1.1 (2014-12) - Network Functions Virtualisation (NFV); Manage-
ment and Orchestration - ETSI https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/

001/01.01.01_60/gs_nfv-man001v010101p.pdf

[4] TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0 (Committee Spec-
ification Draft 04, 11 May 2017) - OASIS http://docs.oasis-open.org/tosca/tosca-nfv/v1.

0/tosca-nfv-v1.0.html

[5] VerifOO RestAPI and XML Dcos - Antonio Varvara, Raffaele Sommese

[6] Physical Network Function (PNF) service chaining with Contrail - OpenContrail http://www.
opencontrail.org/physical-network-function-service-chaining-with-contrail/

27

https://ieeexplore.ieee.org/document/7243304
https://ieeexplore.ieee.org/document/7243304
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://www.opencontrail.org/physical-network-function-service-chaining-with-contrail/
http://www.opencontrail.org/physical-network-function-service-chaining-with-contrail/

	Introduction
	Background
	NFV: Network Function Virtualization
	SDN: Software-Defined Networking

	Starting point
	Model Design
	PNI: Physical Network Infrastructure
	Hosts
	Host

	Connections

	NSD: Network Service Descriptor
	VNF Dependency
	Property Definition
	VNFD: Virtual Network Function Descriptor
	VDU: Virtual Deployment Unit
	Virtual Link
	Dependency

	VNFFGD: VNF Forwarding Graph Descriptor
	Network forwarding path

	PNFD: Physical Network Function Descriptor
	Connection point

	Service Deployment Flavour
	Connection Point

	RESTful web service
	Development
	Granularity
	Methods
	PNI
	Hosts
	Connections

	NS
	VNF Dependency
	Property Definition
	VNF
	VNFFGD
	PNF
	Flavours
	Connection Points

