
MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 1

PCA
Federico Gianno

Abstract—Application of PCA applied on images. It shows
what happens if different Principal Components (PC) are chosen
as basis for images representation and classification. Then, will
be chosen and applied a classifier in order to classify the images
under different PC re-projection.

I. INTRODUCTION

P rincipal component analysis (PCA) is a statistical pro-
cedure that uses an orthogonal transformation to convert

a set of observations of possibly correlated variables (entities
each of which takes on various numerical values) into a set
of values of linearly uncorrelated variables called principal
components [1].

If there are n observations with p variables, then the number
of distinct principal components is

min(n− 1, p)

This transformation is defined in such a way that the first
principal component has the largest possible variance.

PCA is mostly used as a tool in exploratory data analysis
and for making predictive models.

II. THEORY

Given data points into d-dimensional space, project them
into a lower dimensional space while preserving as much
information as possible. In particular, it’s needed to choose
projection that minimizes squares error in reconstructing orig-
inal data.

Principal Components are points in the direction of the
largest variance. Each subsequent principal components:

• is orthogonal to the previous ones
• points in the direction of the largest variance of the

residual subspace

III. PROCEDURES

This section briefly describes a python code implementation
reporting several snippet code with the corresponding expla-
nations and motivations.

1) Requirements
• Pillow (imported as Image)
• numpy (imported as np)
• scikit-learn
• matplotlib (imported as plt)

2) Data preparation
The given data-set is composed by different kind of
photos:

• Dog
• Guitar
• House

• Person
First of all I need to read the data-set and create a matrix
x in which each row is an 1-D array associated to an
image.

img3d = np . a s a r r a y (Image . open (p a t h))

The function will return a 3-D array of the corresponding
image. I need to scale back the 3-D array into 1-D array.

img1d = img3d . r a v e l ()

3) Normalization
PCA is effected by scale so I need to scale the features
in the data before applying PCA.
The normalization consists of mean centering (zero
mean) and normalizing each variables variance to make
it equal to one (standard deviation equals to one).

x = (x−np . mean (x)) / np . s t d (x)

4) PC extraction
At this point I need to extract the n principal components
from matrix x, fit the model with matrix and apply the
dimensionality reduction to the matrix.

For example 2−PC
pca2 = PCA(n components =2)
x t 2 = pca2 . f i t t r a n s f o r m (x)

The original data which is n-dimensional it’s converted
into n components-dimensions.
It can be useful to print the explained variance.

pca2 . e x p l a i n e d v a r i a n c e r a t i o . cumsum ()

The explained variance tells me how much information
(variance) can be attributed to each of the principal
components: it is the ratio between the variance of that
principal component and the total variance.

5) PC visualization and Image reconstruction
Now I am able to visualize the PC. I can plot the whole
data-set or a single photo p from the data-set:

p l t . s c a t t e r (x [p , 0] , x [p , 1] , c= c o l o r)
p l t . show ()

And after having rebuilt the images I can show it too

xr2 = pca2 . i n v e r s e t r a n s f o r m (x t 2)
De−S t a n d a r d i z i n g m a t r i x
xr2 = (xr2 ∗ s t d)+ mean
From 1−D t o 3−D
img2 = np . r e s h a p e (xr2 [p] , (2 2 7 , 227 , 3))
p l t . imshow (img2 , i n t e r p o l a t i o n = ’ n e a r e s t ’)
p l t . show ()

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 2

IV. IMAGE RE-PROJECTION

Each folder contains a lot of images, then the data-set is
huge and the PCA approach will be good: (in the PCA) the
more are the data the more accurate the final result will be.

After the first main steps described in III, I chose a random
image from the whole data-set and i plotted it considering the
first 60-PC, 6-PC, 2-PC and the last 6-PC.

For the last n-PC the approach is the same of the first n-
PC with a little difference: instead of sorting the [eigenvalues,
eigenvectors] tuples from the high to the low, in order to have
the largest possible variance, we have to sort it from the low to
the high. From the point of view of the code implementation
you need to do a manual PC computation.

Fig. 1. Whole data-set. Respectively from the left to the right: original image,
the first 2-PC, 6-PC, 60-PC and last 6-PC.

As you can see the 60-PC (3rd image) image is quite similar
to the original one. In fact the more are the PC the more similar
to the original image will be to the re-projected one.

On the other hand, quite strange are the 2-PC and the 6-PC:
the original photo is a dog but the 2-PC and 6-PC looks like a
human face. This is due to the data-set: the matrix contain the
whole data-set that is composed by a lot of different images
(dog, guitar, house and person) and not only by dogs. So, when
the PC are computed, are brought also PC of different classes:
in this case the PC of the human face have more impact than
the PC of the dog and so the first PC looks like a human face
instead of a silhouette of a dog.

The last 6-PC, are the PC with the lowest possible variance,
so the features that does not allow to distinguish in a good
way the images from each others. In this case it looks like a
human face and it is due to the data-set that, as I said before,
is composed by several kind of images.

At this point I chose to read only one subject of images.
The obtained results is showed in Fig. 2.

Fig. 2. Dogs images. Respectively from the left to the right: original image,
the first 2-PC, 6-PC, 60-PC and last 6-PC.

The result, as you can see, it’s different. Now, the 2-PC and
6-PC don’t look like a human face anymore but, with a little
attention, is possible to see the silhouette (shape) of a dog.
Even the 60-PC are better than before: the silhouette of the
dog is more evident. The more are the number of PC the more
easier to see becomes the silhouette of the dog. The last 6-PC

is really bad, as expected, and it’s not possible to understand
nothing.

V. PC VISUALIZATION

I assigned different label (colours) to each type of subject:
dogs are blue, guitars are green, houses are red and people are
yellow. After extracting the n principal components from the
matrix and fitting the model I visualized the PC.

Fig. 3. PC visualization. Respectively from the left to the right: 2-PC, 3&4-
PC and 10&11-PC

To show better what is happening I decided to do one more
PC visualization increasing the number of PC.

Fig. 4. PC visualization. Respectively from the left to the right: 2-PC, 3-PC,
6-PC, 10-PC and 11-PC.

As you can see on Fig. 3 the 2-PC and the 3-PC are quite
similar and it’s possible to distinguish clearly two classes: the
red (houses) and the yellow (people). The dogs (blue) are not
very visible and it’s a little difficult to clearly separate this
class from the other ones. Finally, the guitars (green) are not
very visible.

In the 6-PC the two previous main classes are now over-
lapped. There is no more a clear difference between the two
classes.

The 10-PC and the 11-PC are very very similar among them
and all the classes seems like they are all overlapped. This is
due to the fact that now the number of PC is higher than before
and it means that more information are brought. As you can
notice, the overlapping start from the first 6-PC and with the
10-PC and the 11-PC is even more visible. This is due to
the fact that the first PC has the largest possible variance; so,
the difference between the classes is more evident. Now, the
PC brings with them more information and so, in addition to
the PC with the largest variance, also the PC with the lowest
variance: this causes the impossibility of being able to notice
a clear difference between the classes.

So, how decide the number of PC needed to preserver data
without much distortion? It depends on the task I have to
perform: if I have to do image reconstruction the more are the
number of PC the more ’similar’ to the original image will be
the reconstructed on; if i have to visualize the PC the less are
the PC the more visible will be the difference between classes.

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 3

VI. NAIVE BAYES CLASSIFIER

Naive Bayes classifiers are a family of simple ”probabilis-
tic classifier”: a classifier that is able to predict, given an
observation of an input, a probability distribution over a set of
classes, rather than only outputting the most likely class that
the observation should belong to [2].

The Naive Bayes classifier is based on applying Bayes’ the-
orem with strong (naive) independence assumptions between
the features.

p(Ck|x) = p(Ck)p(x|Ck)

p(x)

After splitting the data-set into train and test set, I used
the Naive Bayed Classifier in several cases and I check the
respective accuracy.

TABLE I
DATA CLASSIFICATION

Case Succes rate
Unmodified images 74.65%

2-PC 59.05%
3-PC 63.23%
4-PC 64.62%

In Table I is possible to notice that the higher are the
number of PC the more is the accuracy. This is due to the
application of the PCA: it allows estimating probabilities in
high dimensional data but with a dramatic reduction in size
of data. This reduction could be a good thing in some cases,
but not in this one. Reduction means lose information and
then also the classifier has less information to train; because
of this, the accuracy is higher when the number of PC is high
because of less information are lost. However, it can not be
better than the accuracy of the original image.

VII. MORE

I did one more task beyond the assigned ones. I used only
one photo and I considered Lenna. Lenna (or Lena) picture
is one of the most widely used standard test images used
for compression algorithms [3]. Lenna is a digitized Playboy
centerfold, from November 1972 [4].

As anticipated I did not use an huge data-set but one single
photo. After reading the image as 3-D array i reshaped it in
2-D array and then I calculated the first 50-PC. Below the
512x512 image and on the right its reconstruction using the
50-PC.

Fig. 5. ’Lenna’ (or ’Lena’) picture on the left. On the right its 50-PC
reconstruction

In this case the reconstructed image is a blurred image of
the original one.

VIII. CONCLUSIONS

A. PCA

One of the most important applications of PCA is for
speeding up machine learning algorithms. It use useful to
estimate probabilities in high dimensional data thanks to its
dramatic reduction in size of data. On the other hand it can be
too expensive for any application and can only capture linear
variation.

B. Naive Bayes Classifier

It is a simple technique for constructing classifiers and it is
easy to build and particularly useful for very large data sets.
Along with simplicity, Naive Bayes is known to outperform
even highly sophisticated classification methods. It can be used
for real time prediction because it’s fast. A limitation of Naive
Bayes is the assumption of independent predictors. In real life,
it is almost impossible that we get a set of predictors which
are completely independent.

REFERENCES

[1] From Wikipedia, Principal component analysis. https://en.wikipedia.org/
wiki/Principal component analysis

[2] From Wikipedia, Naive Bayes Classifier. https://en.wikipedia.org/wiki/
Naive Bayes classifier

[3] ”Playboy centrefold photo shrunk to width of human hair”. BBC News
Online. 14 August 2012. Retrieved 15 August 2012. https://www.bbc.
com/news/technology-19260550

[4] Lenna Story. http://www.lenna.org.

